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A társadalmi csoportosulások is folyamatosan ki vannak téve különféle 
környezeti hatásoknak. A dolgozatban egy mesterséges immunitás-
modellt mutatunk be a korábban kifejlesztett SORS önszervező védelmi 
rendszerre vonatkozóan1. 
 
 
Nem csak az ember, hanem a társadalmi csoportosulások is (az ingatlanoktól a 
nemzetekig) folyamatosan ki vannak téve különféle környezeti hatások 
támadásainak, a szó legáltalánosabb értelmében. Ezeket a hatásokat valamilyen 
mértékben tolerálják, és a legrátermettebb, immunitási képességétől függően, 
túléli. A dolgozatban egy mesterséges immunitás-modellt mutatunk a korábban 
kifejlesztett SORS (Angol eredeti mozaikszó!).  önszervező védelmi rendszerre 
vonatkozóan2. A SORS megalkotásához standard sejtautomata módszert 
alkalmaztunk, kombinálva a hibafa módszer logikai (determinisztikus) 
verziójával (azaz mellőzzünk minden valószínűségi vonatkozást). In silico 
kísérletekkel megmutatjuk, hogy a megfelelő átmeneti szabályok és egyszerű 
genetikus algoritmusok szükségszerűen valamiféle mesterséges immunitás 
kialakulásához vezetnek, anélkül, hogy bevezetnénk egyfajta ilyen képességet a 
sejt modelljébe. Áttekintjük eredetét és tulajdonságait. A “mesterséges 
immunitásmodell” terminus azt jelenti, hogy nem leírni vagy szimulálni akarunk 
valamilyen immunitás-rendszert, hanem inkább megalkotni egy olyan normatív 
rendszert, melynek célja annak felderítése, milyen szabályok illetve feltételek 
biztosítják egy komplex, mesterséges, adaptív rendszer védekező képességét 
sikerességét. 
 

Abstract 
Not only human body but also social groups (from real estates to nations) are repeatedly 
attacked by several environmental effects in the most general sense of the word. Attacks are 
tolerated for awhile and the fittest, depending on its acquired immunity, survives. Here an 
artificial immune property is demonstrated of an artificial self organizing raiding system 
(SORS). To construct SORS standard cellular automata techniques are used combined with a 
logic (or deterministic) version (ie.dispensing with probability notions) of fault tree 
methodology. It is shown, by performing in silico experiments, that suitable transition rules 
and simple genetic algorithms necessarily entail the emergence of a kind of artificial 
immunity without explicitly introducing any fitness property into the cells. Its genesis and 

                                                 
1 SORS-hivatkozás 
2 SORS-hivatkozás 
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properties are discussed. The term „artificial immunity modeling” means that we do not want 
to describe or simulate a real immune system but, rather, to construct a normative system is 
aimed at questioning what rules and other conditions ensure successful defense capability of a 
complex adaptive artificial system 

Introduction 
The complex adaptive system, the candidate for possessing (or rather developing) immunity, 
is called SORS (Self Organizing Raiding System). It is a cellular automata3  (cellular space 
„CellSpace” CS for short preferred) consisting of two type of cells called respectively 
defender and defendee (defendent) agents (cells). Alternatively, we speak of special cells 
called „Guards” whose task is to „defend” the other (common) cells. Common cells are 
interpreted as the land units of a site (such as eg. a country) 
The CS is a closed (torus-like) cellular automata with the usual four-nearest-neighbor 
neighborhood, as on Fig. 4. There are two types of the common cell states. A common cell 
can be either in a „virtual” or in a „real” state. The state transition rule serves two goals. In 
case of virtual states it ensures the perpetual changes of states resulting in a global state cycle 
of the CS. In case of real states it ensures modeling (or to describe) the land unit’s (desirable 
or expedient) behavior under and following an attack and a defense procedure.  

Preliminaries 

CellSpace 
The cell space (CS) is characterized4 by 

• a grid of cells containing 64 rows and 64 columns, 
each cell having nStates  states s = 0, 1,…, nStates – 1,  
the state of cell C at time t is denoted by State(C, t), t integer. 

• the neighborhood any cell C consisting of the four nearest neighbors of C 
being  

N(C) = <N1(C), N2(C), N3(C), N4(C)>,  
respectively the northern (top),  
the eastern (left),  
the southern (bottom) and  
the western (right) neighbor. 

It is supposed that the neighborhood is independent of time  
• the transition function F( , ) of cell C with parameter t is of the form 

F (C, t )= State(C, t + 1) = F(State(C, t ), State(N(C), t)) 
A cell C is generally identified by its place in the grid of CS i.e. by the ordered pair  

(Row(C), Col(C)) 
 where Row(C), Col(C) is the row and to column of the cell C on the grid of CS respectively. 
If necessary, we write 

 (Row(C, t), Col(C, t)) 
For the place of cell C at time t. 
Thus we speak of Cell(12, 36) meaning the cell in row = 12 and column = 36.. Accordingly, 
S(12, 36) = 5 means the state of the cell Cell(12, 36) in the virtual state = 5 while S(12, 36) = 
5! means the state of the cell Cell(12, 36) in the real state = 5. In the present paper the number 
of cells nCells is chosen conventionally to be 212 = 4096 

                                                 
3 Technical terms related to cellular automaton can be found e.g. in [Wolfram] 
4 This is not the mathematical definition of a cellular automaton. For a detailed formal treatment, see [Riguet] 
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Guards 
In the SORS CellSpace there are two kinds of cells: common cells and guards. Common cells 
obey the transition rule (defined by the transition function above).  
Guards walk according to the  

Guard Walk Algorithm 
Guard walk means that a guard at each time step t looks around clockwise in its neighborhood 
(starting at the top neighbor) searching for the „defendent cell”. The defendent cell DC(G)  (if 
exists) of the guard cell G is a common cell in maximal real state. If it does not exist then G 
chooses randomly a common cell from its neighborhood. Then, at time t + 1 the guard 
occupies the defendent’s place and takes the defendent’s state with virtual thread. Otherwise 
(if there is no defendent cell in its neighborhood) G doesn’t move.   
Formally, a cell G is (or rather occupied by) a Guard if its walk function is of the form   
(RG)      (Row(G, t + 1), Col(G, t + 1)) = (Row(G, t) + ρ), Col(G, t) + σ)) 
where  ρ, σ < 1, > 0, are random variables according to the above „defendent searching” 
procedure.   
The interpretation (or rather the practical realization) of the guard’s move, especially across 
the border of the CellSpace, is by no means straightforward. Still we trust it to be feasible. 
In the present paper the number of Guards nGuards is chosen conventionally5 to be 28 -1 = 
255 
 

CellState 
The state of a common cell can be changed in two ways: spontaneous and forced. 
Spontaneous cell state change occurs according to the state transition rule. The next 
spontaneous state of a common cell is easily calculated by the state transition function. 
Forced state change occurs through the attack. The next forced state of a common cell is 
determined by the state of the risk explicatum assigned to the cell and calculated by the State 
Calculation Algorithm 
 
 
 
 
 
 

                                                 
5 Due (computational) technical reason Guard(8) does not exists. (For, in Visual Basic, Chr(8) is the code of 
Space, while the Chr() function is used to code Guards and the Space for the abscence of  guard at a location.) 

 3



The cell space 
 

 

A Cell in state 10
A Guard #64

 
Fig. 1. The cell space CS in its initial global state 

 
 
 
 
 

The name of the Risk 
Explicatum 
(intuitively the top 
event of a Fault Tree) 

The SORS cell space (CS) in the present implementation is a systolic closed cellular 
automaton with an array of 64 x 64 cells, each cell having 16 possible states s =  0, 1,…, 15. 
To each cell there belongs a „logic” or „deterministic” fault tree as opposed to the adjective 
„probabilistic”. If a traditional fault tree6 is deprived from its probabilistic features and also 
from graphical representations using logic gates, one arrives to the formal notion of the Risk 
Explicatum. Its definition is the following: 
By a Risk Explicatum we mean an n-element set of Boolean equations of the following form: 
 

1 mii i iE C(E ,...,E )=  

Here: 
Letter E means an element – called „event” – of a fixed finite distributive lattice7 with m 
atoms, 
i = 1,…, n 
 mi = 1,…, n with all i1,…, imi > i         (1) 
C is either a conjunction or a disjunction of mi variables. 

                                                 
6 For an introduction of traditional fault tree methodology, see e.g.  [Henley] 
7 Loosely speaking a Boolean algebra without negation. 
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Ei is said to have the logic type „A” („AND”) or „V (OR, „Vel”)” if it is a conjunction or 
disjunction respectively. 
Events occurring on the right hand sides are called explicants of the event of the left hand 
side. 
Events occurring only on the right hand sides are called primitive events (primevents, prime 
explicants or just primes for short) and denoted by p.  
Events that are not primes are sometimes called complex or composite (events). 
 
Example8:  
n = 39, m = 22 (writing Ei instead of Ei, pi instead of pi), using „+” and „x” for disjunction 
and conjunction respectively. 
 
E1 = E2 + E3 + E4 E2 = E5 x E6 E3 = E7 x E8 x E9 
E4 = E10 x E11 E6 = E14 x E15 E7 = E12 x E13 x E16 
E8 = E17 x E18 E9 = E19 x E20 E10 = E31 + E32 
E11 = E33 x E34 E18 = E23 + E24 E20 = E21 + E22 
E24 = E25 + E26 E25 = E27 + E28 E26 = E29 + E30 
E34 = E35 x E36 x E37 E35 = E38 x E39  
 
The prime events: 
 
p1 = E5 p2 = E12 p3 = E13 p4 = E14 
p5 = E15 p6 = E16 p7 = E17 p8 = E19 
p9 = E21 p10 = E22 p11 = E23 p12 = E27 
p13 = E28 p14 = E29 p15 = E30 p16 = E31 
p17 = E32 p18 = E33 p19 = E36 p20 = E37 
p21 = E38 p22 = E39   
 
As for the representation of the fault tree we prefer the outline view of Microsoft Windows® 
Word instead of the clumsy an obsolete graphical representation using logic gates. See Fig. … 
 

                                                 
8 The example is taken with permission from [Kortenhaus ea]. The names of the event is in the Appendix 
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Fig. 2. The Cell Space after the first step: the guards (with underlined numbers) finished 

with one step in their random walk. 
 
 
 
 
 

 
Fig. 3. The Cell Space after a few spontaneous steps: the guards (with underlined 

numbers) finished with a few steps in a random walk. 
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Fig. 4. The neighborhood if an „inner cell” in row 6, column 10. Its index (serial 
number) is 329, state = 14 („Mégse” is Hungarian for „Cancel”). After pressing „OK”, 

Fig. 6. displays. 
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A land unit. „HT Weed” is the top event of 
the fault tree belonging to the land unit. 

 
Fig. 5. The interpretation of the cell space CS. A site (here Hungary) is covered by a grid 

of 64x64 rectangles called „land units”. To each land unit there belongs a fault tree. 
(Different fault trees to different, but not necessarily vice versa.) ”HT Weed” is for 

„Herbicide Tolerant Weed. See 
http://www.deh.gov.au/settlements/publications/biotechnology/hazard/fault.html ” 

 
 

 
 
 
 
Let us consider a „site”. A site can be a territory, a domain, a field, a spot. To be concrete let 
it be a country (say, Hungary) that we want to investigate from disaster prevention and 
management point of views. To be more precise: we want to examine how to avert the attack 
that threatened the country in the general and abstract sense of the word „attack”9 Divide the 
site to rectangular land units and suppose that to each land unit there belong a fault tree-like 
knowledge base equipped with suitable sensing devices (or sensors). This will be called 
henceforward a Risk Explicatum with the formal definition given later. 

States 
States of the cells in the Cellpace are uniformly assigned to the cells as s = 0,1,2,…,z where 
here in the present implementation z = 15. 

                                                 
9 The concept of „attack” is to be considered here as the explicatum of the everyday word. For the method of 
explication, see [Carnap]  
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Fig. 6. The fault tree representation of a Risk Explicatum, REX belonging to the cell in 

question. (& means conjunction, V means disjunction) 
(With permission of Profes Ltd. Hungary, http://www.profes.hu) 

Transitions 
The transition rule is probably the simplest possible one: „majorant replication” 
The majorant m of a cell’s state s is the state of the first10 neighbor cell with m =  s + 1 if s < 
z, and  m = 0 if s = z (= 15). Thus the next state of a common cell is the majorant’s state. 

Attacks 
An attack here means that a (common) cell changes its threat (or type) from „virtual” to 
„real”and changes its state (increasing, decreasing or remaining) randomly. 
The rules for attack (or rather the normative restrictions) are as follows. 
(AR1) Guards and Guards’s neighbors are never attacked. 
(AR2) Border cells are never attacked. 
(AR3) A common cell in state s is attacked only if s > SL (the Safety Level) 
At present we speak of 15 Safety Levels, SL = 0, 1, 2, … , 14. 

The interpretation of the related notions of „attack” 
 
The interpretation of the cells is the land units of a site.  Here the site is a country (actually 
Hungary). 
A cell can be either in a virtual or in a real state. 
The common name of virtual and real cell state is the threat (of a land unit). We sometimes 
speak loosely of „virtual thread” and „real thread”. Also, the term „unthreatened state”and 
„threatened” is used for the virtual state. Each cell must be always in one of the state 0 ,1,…, 
15.  
The state (of a cell) s1 is interpreted as less dangerous than s2 whenever s1 < s2, and both states 
have the same threat. Comparison of states with different threads is uninterpreted. 

                                                 
10 „first” in the sense of the walk around the cell clockwise starting at the top neighbour (north) 
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Thus we theoretically differentiate between state s = 0 and r = 0 when s is unthreatened 
(virtual) while r is threatened (real). As for the interpretation, see below. 
 
The interpretation of the virtual cell state is the required safety preparedness of the land unit 
in question. (Possessing fire extinguishers, sprinklers, etc.)  
The interpretation of the real cell state is the degree of the actual thread of the land unit in 
question.  It is measured by the Franklin-parameters: the cost and time necessary (and 
sufficient) to mitigate the damage and to restore the original unthreatened state of the cell. 
The interpretation of the state transition changes according to the following cases. 

• Case 1: virtual – virtual transition: controlling safety preparedness 
• Case 2: virtual – real transition: attack 
• Case 3: real – virtual transition: defense 
• Case 4: real – real transition: thread spread or land unit destruction.  

In case of the state transition of the form r1 => r2 where both r2 and r1 are real 
states and r2 > r1 we speak of „thread spread”.  
In case of the state transition of the form r1 => r2 where both r1 and r2 are real 
states and r2 = r1 we speak of „stagnant thread”.  
In case of the state transition of the form r1 => r2 where both r1 and r2 are real 
states and r2 < r1 we speak of destruction (of the land unit). It may occur in the 
only case when  r2 = 0 and r1 = 15. 
 

The impact (effect) of an attack ATT wrt a CS configuration CSC is defined by the 3-tuple  
 

<CSC, ASI, SL> 
Where 
CSC – the CellSpace Configuration of the given CS.  

By definition CSC is a bit string of length L = nCells x k 
Where  

nCells is the number of cells in CS. (Here nCells = 4096) 
k is the number of bits of nStates. (In case of nState = 16 then k = 4) 

 

The Attack-algorithm 
An attack in the SORS-model is carried out by the following algorithm. 
1. Initialization.  
Set the AttackDuration. AttackDuration is a quantity between 0 and 100. It means the number 
of steps when an attempt is made for changing the threat and state of a common cell. 
Set the Safety Level SL to SL = 0 
2. Set the Ammunition. 
Select randomly the maximal number of the cells to be attacked.  
It is  

Ammunition = nCells x (Duration/ 100)% 
3. Aim a cell.  
Select a random cell index CellIndex of a common inner cell C that is not a guard’s neighbor. 
4. Calculate the state of Cell C(CellIndex) using the State Calculation Algorithm. 
5. Increase the safety level. 
If SL < 14 then increase it SL =: SL + 1 and go to 2. else the attack-algorithm is over. 
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An 
attacked 

cell in real 
state 6.

 
    Fig. 7. The Cellspace (modeling the Landscape) after an  

attack at safety level = 0.  
The initial global state (configuration) of the CS  

has radically changed. 
  

A common 
cell in 

virtual state 
3. 

The Forced State Calculation Algorithm 
The basic idea of the CellState of a Cell(CellIndex) that occurs due to an attack step is as 
follows. The impact of an attack is detected by the sensors attached to the land unit (cell) and 
determine the primestate (the state, or rather the activity, of the prime events) of the Risk 
Explicatum REX (basically a Fault Tree belonging to the land unit). To each primevent p 
there belong in advance the four Franklin parameters FPi, i = 1, 2, 3, 4: the prevention and 
renovation cost and time need of  p: the PrevCost(p) = FP1(p), the RenCost(p) ) = FP2(p),  the 
PrevTime(p)  = FP3(p),  and the RenCost(p) = FP4(p)  respectively. These Franklin 
parameters FPi(p), i = 1, 2, 3, 4 can be extended11 to each composite event e even to the top 
event f  the REX.  
Now to derive the forced CellState s from the PrimeState defines the following variables:  
MaxPrevCost = FP1(f), 
MaxPrevTime= FP2(f), 
SumPrevCost = The sum of all FP1(p) with active p 
SumPrevTime = The sum of all FP1(p) with active p 
Divide into four parts the intervals [0, MaxPrevCost] and [0, MaxPrevTime] to get four 
PrevCostIntervals and four PrevTimeIntervals as 
PrevCostInterval (0) = [0, 0.25 x MaxPrevCost) 
                                                 
11 For  the description and  code of the algorithm for calculating the top event’s Franklin parameters from that of  
the prime events, contact the author.  
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PrevCostInterval (1) = [0.25, 0.5 x MaxPrevCost) 
PrevCostInterval (2) = [0.5, 0.75 x MaxPrevCost) 
PrevCostInterval (3) = [0.75, MaxPrevCost) 
And 
PrevTimeIntervals and four PrevTimeIntervals as 
PrevTimeInterval (0) = [0, 0.25 x MaxPrevTime) 
PrevTimeInterval (1) = [0.25, 0.5 x MaxPrevTime) 
PrevTimeInterval (2) = [0.5, 0.75 x MaxPrevTime) 
PrevTimeInterval (3) = [0.75, MaxPrevTime) 
 
Define 16 „ForcedStateBox(i)” for i = 0, 1, …,15 by the direct products of the above 
intervals. The ForcedCellState is defined according that what box contains the SumPrevCost 
and the Sum PrevTime in the sense of Forced State Calculation Algorithm below. 
Now the forced CellState determined by the PrimeState is defined as the result TheCellState 
of the  
Forced State Calculation Algorithm: (written in Visual Basic 612) 
Select Case True 
    Case 0 <= SumPrevCost And SumPrevCost < MaxPrevCost * (1 / 4) And _ 
        0 <= SumPrevTime And SumPrevTime < MaxPrevTime * (1 / 4) 
        TheCellSte = 0 
    Case 0 <= SumPrevCost And SumPrevCost < MaxPrevCost * (1 / 4) And _ 
        MaxPrevTime * (1 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (2 / 4) 
        TheCellSte = 1 
    Case 0 <= SumPrevCost And SumPrevCost < MaxPrevCost * (1 / 4) And _ 
        MaxPrevTime * (2 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (3 / 4) 
        TheCellSte = 2 
    Case 0 <= SumPrevCost And SumPrevCost < MaxPrevCost * (1 / 4) And _ 
         MaxPrevTime * (3 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (4 / 4) 
         TheCellSte = 3 
    Case MaxPrevCost * (1 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (2 / 4) 
And _ 
        0 <= SumPrevTime And SumPrevTime < MaxPrevTime * (1 / 4) 
        TheCellSte = 4 
    Case MaxPrevCost * (1 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (2 / 4) 
And _ 
        MaxPrevTime * (1 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (2 / 4) 
        TheCellSte = 5 
    Case MaxPrevCost * (1 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (2 / 4) 
And _ 
        MaxPrevTime * (2 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (3 / 4) 
        TheCellSte = 6 
    Case MaxPrevCost * (1 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (2 / 4) 
And _ 
         MaxPrevTime * (3 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (4 / 4) 
         TheCellSte = 7 
    Case MaxPrevCost * (2 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (3 / 4) 
And _ 
        0 <= SumPrevTime And SumPrevTime < MaxPrevTime * (1 / 4) 
        TheCellSte = 8 
    Case MaxPrevCost * (2 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (3 / 4) 
And _ 
        MaxPrevTime * (1 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (2 / 4) 
                                                 
12 With permission of Profes LTD. www.profes.hu  
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        TheCellSte = 9 
    Case MaxPrevCost * (2 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (3 / 4) 
And _ 
        MaxPrevTime * (2 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (3 / 4) 
        TheCellSte = 10 
    Case MaxPrevCost * (2 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (3 / 4) 
And _ 
         MaxPrevTime * (3 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (4 / 4) 
         TheCellSte = 11 
    Case MaxPrevCost * (3 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost And _ 
        0 <= SumPrevTime And SumPrevTime < MaxPrevTime * (1 / 4) 
        TheCellSte = 12 
    Case MaxPrevCost * (3 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost And _ 
        MaxPrevTime * (1 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (2 / 4) 
        TheCellSte = 13 
    Case MaxPrevCost * (3 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost And _ 
        MaxPrevTime * (2 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (3 / 4) 
        TheCellSte = 14 
    Case MaxPrevCost * (3 / 4) <= SumPrevCost And SumPrevCost < MaxPrevCost * (4 / 4) 
And _ 
         MaxPrevTime * (3 / 4) <= SumPrevTime And SumPrevTime < MaxPrevTime * (4 / 4) 
         TheCellSte = 15 
End Select 

Defense 
Defense here means that a (common) cell changes its threat (or type) from„real” to „virtual” 
and changes its threat according to the following defense rules (DR1-DR2) 
(DR1) If a common cell C in a real state r has a guard neighbor, then the next state s of cell C 
is s = r, but the threat of C becomes virtual. 
(DR2) The cell becomes a guard. (The guard „occupies the cell”) 
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Fig. 8. After the 40-th defense step 

(nDS = 40) 
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Experiment: Lull – Attack – Defense 
An (in silico) experiment with the system modeled (or rather normatively described) by the 
SORS project generally includes three global epochs: 

• The Lull. It is a time interval with each cell being in virtual state, no state is missing, 
and the structure (the state configuration) of the CellSpace is more or less disordered, 
guards walk at random.   

  During Lull, - as the experience shows - the states of set of the CS’s common cells 
  form a cycle with length nStates = 16. 
• The Attack. Randomly selected common cells in virtual state of random population 

change their threat to real and change their state depending on the cell’s risk 
explicatum independently of the state transition rules using the Forced State 
Calculation Algorithm. 

• The Defense. If a common cell in a real state has a guard neighbor, then the threat of 
the cell becomes virtual, the state remains unchanged and the guard occupies the cell. 
According to the experience the defense always ends with a success in more or less 
defense steps. See Fig. 9.-11. 

The three epochs forms – by definition – an X-run. 
An experiment is – by definition – the series of consecutive X-runs ending with the last run 
(L-run). The number of runs within an expert is denoted by nRuns 
Let X-run be the nRun-th (nRun > 1) member of an experiment denoted by X-run(nRuns)   
The relative frequency  RF(X-run) of an X-run is - by definition –  

RF(X-run)  = nDefs(nRuns) /  nRun 
where  
nDefs = the number of defense steps during the X-Run 
Let X1-run and X2-run two consecutive X-runs:  

X1-run = X-run(nRuns-1)  
X2-run = X-run(nRuns)   

 
The last run or the stochastic limit of an experiment is the X-run if the difference between its 
relative frequency and of its predecessor is relatively small. It is stipulated here the difference 
to be = 1%. 
It is said that the experiment ends if stochastic convergence eventuates. 
 

Performing and Report of an experiment  
See Figs. 7 -11. As for the related algorithms see www.profes.hu  
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Fig. 9. After the 70-th defense step 

(nDS = 70) 
 
 
 

 16



 
Fig. 10. After the 180-th defense step 

(nDS = 180) 
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Fig. 11. Success after the 214-th defense step. (nDS =214) 

In spite of the radical change in the initial configuration of the CS  
Self defense was finally successful.  
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Fig. 12. Cycle after success at 214-th defense step 
 
 
 

Power and Safety levels 
A run of an experiment can be performed at several Safety Level SL. See Fig. 13. 
 

 
 

Fig. 13. The first 3 runs of an attack experiment at safety level = 0 
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Fig. 14. Runs of an attack experiment at safety level = 0, 1, 2 
 

    
 

          Fig. 15. Runs 099 – 111 of an attack experiment at safety level = 13, 14 
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Out of a 100-run experiment 48 runs were necessary to reach the 
stochastic convergence at safety level SL = 0 and 5 at SL = 4 

Immun Power  = 
    nRuinCells 
 nDefenceSteps  

 

 

48 + 33 + 41 + 23 + 55 + 41 + 31 = 272, 
I(0) = 272 / 7 = 39 = 100%, by stipulation. 
(9+ 33 + 12 + 34 + 7 + 35+ 18) / 7 =  21    
I(1) =  21 / 39 = 53,85% 
I(2) = 5 / 39 = 12,82%  
I(3) = 2 / 39 = 5,13% 
… 
 
 

 
Fig. 16. Empirical Vulnerability in r-view. Results of the 1 -7 experiments at each safety 

level = 0, 1,…,14 
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Fig. 17. Empirical Vulnerability in r-view. Results of the 1 -60 experiments at each safety 

level = 0, 1,…,14 
 
 

 

 
Fig. 18. Empirical Vulnerability in r-view. Results of the 1 -105 experiments at each 

safety level = 0, 1,…,14. From this number of experiments the shape of the Vulnerability 
(SL, X) function changes with decreasing frequency. 
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Out  of 145 of 
experiments 15 
had nRuns = 112 

 
Fig. 19. Empirical Vulnerability in s-view. Results of the 1 -145 experiments at each 

safety level = 0, 1,…,14. The shape of the Vulnerability (SL, X) function changes with 
irregular frequency as a function of nX, the number of experiments.. 

 

Immunity and vulnerability 
The concept of immunity13 (of a SORS-like system) stems from the intuitive concept of 
vulnerability. If a system is wounded it looses or weakens its ability to recover or to cope with 
attacks. Immunity is, in a sense, the opposite of vulnerability. The „easier” to recover from a 
wounded state the better or higher the immunity of the system. 
The precise characterization of the recovery process strongly depends on the definition of the 
„easiness” or rather the „difficulty” of the recovery. It seems to be fruitful14 to define 
difficulty as the number of the global steps necessary (and sufficient) to reach a global system 
state without any cells being in a dangerous state i.e. to reach the CS_Lull following an 
                                                 
13 Immunity is meant here in the intuitive form. Nothing to do with its juristic, medical or other explicative 
connotations. 
14 By stating that this concept is fruitful by no means meant that it is faithful also to the intuitive notion of 
vulnerability. This question is deeply related to the problematics of explication. See [Carnap]. The question of 
fruitfulness vs faithfullnes of a concept, in relation to the question of rigor, see [Kreisel] 
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attack. Intuitively immunity is somewhat similar to tolerance15. The main difference between 
tolerance and immunity is that immunity is tolerance as a function of safety level. 
Along the explication we must take into consideration the following. 
The very notion of attack is par excellence inherently stochastic. That is the main reason that 
one is forced to investigate attack-prone systems from immunity point of view through in 
silico experiments. It follows that the results of the experimental study necessarily refers to 
experiments. Experiments, however, as such, are always incidental. So, to get theoretical 
results of considerable generality and validity, one must dispose of all references to 
experiments. This leads to the concepts of theoretical immunity in both r-view and s-view 
respectively. 
Once a quantitative notion of Vulnerability, measured in %, is agreed upon, relating to an 
experiment performed at a Safety Level SL, we stipulate empirical vulnerability and 
empirical 

Immunity (SL, X)  = 100% - Vulnerability (SL, X). 
It seems there are two more or less natural ways to explicate empirical vulnerability. They 
will be named respectively r-view (short for „run-view) and s-view (short for „step-view). 
Accordingly we will speak of r-Immunity and s-Immunity in both r-view and s-view sense. 
As a basic concept to prepare for the r-view let us introduce nRuns(SL, X) as the number of 
runs wrt an experiment X, performed at Safety Level SL, necessary (and sufficient) to reach 
the Stochastic Convergence.  
As a basic concept to prepare for the s-view let us introduce nDS (SL, X) the number of global 
defense steps wrt an experiment X, performed at Safety Level SL, necessary (and sufficient) 
to reach the CS-Lull i.e. the CS configuration with no real (thread of) cellstate. See Figs. 7. – 
11. 
As an overview some information are presented concerning the results of the algorithms 
related to immunity or vulnerability in both r-views and s-views. See Figs. 16 – 19. 
 

Summary 
An artificial immunity concept was studied that emerged from an artificial self organizing 
network capable of defending itself called SORS (Self Organizing Raiding System). It is a 
systolic closed four-neighbor cellular automaton with two types of cells: defender an defendee 
in other words guards and common cells. Each cell has 16 state (0..15) and is equipped with a 
logic fault tree. Two types of cellstate interpreted as the threat of the cell is defined: virtual 
and real. An attack concept against the SORS is modeled. There are two kind of state 
transition. Spontaneous and forced. Spontaneous transition occurs according to the common 
cells. Forces state transition occurs due to the attack. The transition function for the common 
cells is the „majorant replication” where the majorant of a cell is the first clockwise-found 
neighbor with the highest state modulo 15, if any. 
The transition function for the guard cells is the one-side-step random walk with some 
restriction: guards don’t step on each other, etc. Guards occupy the suitable common neighbor 
cell and then obey the transition rule for common cells.  
The forced cell state cussed by an attack is calculated by an algorithm using the Boolean 
algebraic properties of the fault tree attached to the cell in question. 
Two immunity concept is defined called empirical and theoretical respectively. 
The empirical immunity concept is based on the intuitive notion of vulnerability and studied 
experimentally in silico.  
Formally Immunity (SL, X)  = 100% - Vulnerability (SL, X)  
where X is an experiment performed at a safety level SL (0..14) 
An experiment consists of three epochs called respectively Lull, Attack and Defense. Each 
experiment is conducted at a Safety Level until stochastic convergence wrt the relative 

                                                 
15 See [Bukovics, Tolerance] 
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frequency of the defense steps following an attack. A common cell in state s is attacked only 
if s > SL (the Safety Level). 
Each experiment X is characterized by the nRuns number of runs and by the nSteps the 
number of defense steps at a Safety Level necessary and sufficient to reach stochastic 
convergence.  
Accordingly two kind of immunity concept is defined. These are called respectively of r-view 
and s-view. The theoretical immunity concept is derived from the empirical by standard data 
processing techniques.  
The result received from about a 150 in silico experiments is that although the theoretical s-
view Immunity is more natural and stands closer i.e. more faithful to the intuition than the of 
the r-view, the latter, however seems to be more promising, more regular, in one word, more 
fruitful. 
Immunity is a generalization of the recently introduced similar concept for SORS-like 
systems viz tolerance. Tolerance can be considered as the immunity at Safety Level = 0. In 
other words tolerance is the „zero-immunity”. In this framework – of course – „zero 
tolerance” strictly speaking makes no sense (at least in the police sense) but it may mean „no 
immunity”. 
 

Future Work 
In a forthcoming continuation of the present paper we want to provide a detailed report of our 
work. It is intended to include the empirical and theoretical immunity algorithms for both 
cases of r-view and s-view. Related (VB6 source) codes are available from Profes lTD, 
Hungary, www.profes.hu . 
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